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1
SPARSE ADAPTIVE FILTER

BACKGROUND

This disclosure relates generally to the field of image pro-
cessing, and more particularly to a system and a method for
selecting, on a per material and per scene basis, hyperspectral
wavebands that are useful for detecting materials in hyper-
spectral scenes.

In many conventional image processing scenarios com-
prising hyperspectral imaging (HSI) systems, hyperspectral
sensors collect data of an image from one spatial line and
disperse the spectrum across a perpendicular direction of the
focal plane of the optics receiving the image. Thus a focal
plane pixel measures the intensity of a given spot on the
ground in a specific waveband. A complete HSI cube scene is
formed by scanning this spatial line across the scene that is
imaged. The complete HSI cube may be analyzed as a mea-
surement of the spectrum, the intensity in many wavebands,
for a spatial pixel. This spatial pixel represents a given spot on
the ground in a cross-scan direction for one of the lines at a
given time in the scan direction. These spectra are analyzed to
detect targets or spectral anomalies.

SUMMARY

Hyperspectral sensors collect a lot of information. Process-
ing all this information to detect target(s) in a scene is very
computationally intensive. Only a fraction of the information
collected is useful to detecting targets. More specifically,
given the information represented by a full set of wavebands
or bands, some of the bands have useful information. As such,
performing a filtering process to select which bands are use-
ful, called “sparse bands,” and then performing a detection
process using the selected sparse bands, can reduce the
amount of computing needed to find to a target. In turn, a less
powerful processor(s) can be used saving electricity, cost,
and/or size, just to name a few benefits.

Which of the bands in a full set of bands are sparse bands,
however, changes from target to target and from scene to
scene. Consider a real-world example of trying to look for a
blue tarp in Southern California, which includes urban, sub-
urban, rural, and desert scenes or backgrounds. The blue tarp
can be found by detecting a particular contrast (i.e., signature)
between the spectrum of the blue tarp and the spectrum of a
background including the blue tarp. The contrast, however,
differs for each combination of the blue tarp and respective
background. For example, the blue tarp against an empty and
uniform desert looks, hyperspectally, different than against an
urban background, which may include other blue-colored
objects, such as a blue car or mailbox.

Accordingly, there is a need to dynamically and adaptively
search a full set of bands for a set of sparse bands unique to
each combination of target and scene. Furthermore, there is a
need to perform a dynamic and adaptive sparse band selection
process that limits search overhead processing and performs
fewer computations than to processing a full set of bands.

A filtering engine according to examples described herein
address the foregoing needs by successively testing bands to
compute a signal to clutter ratio using a target reference
spectrum and scene covariance matrix (and its inverse). The
selection process is iterative and, in a preferred example of the
filtering engine, uses three search techniques. The three
search techniques are called “Ranking,” “[.eave One Out,”
and “Variable Band Search.” They are described below in
order of least computational complexity to greatest compu-
tational complexity.
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How “good” the selected bands for detecting materials in
scenes is related to the computational complexity. The best
selection method, “Variable Band search”, is the most com-
putationally complex. A convenient example of the filtering
engine uses Ranking and Leave One Out, sequentially, to
eliminate low value bands (i.e., bands with little or no useful
information), and then uses the Variable Band Search to select
a final set. The layered approach uses many fewer operations
than using Variable Band Search alone but observations have
shown that the layered approach provides comparable results.

The measure of goodness for band selection is the band
signal-to-clutter ratio or “SCR” either as a fraction of the full
dimension SCR or as a stand-alone value.

SCR=(s—11)"Z " (s-113)

where:

s=known target spectrum

1,=mean background

2, =covariance matrix

One of the advantages to using the SCR as an evaluation
criterion is that a set of bands can be evaluated without having
to process all pixels and can be computed quickly.

Other examples of the filtering engine use the selected
sparse bands to determine which pixels should be re-tested
using full dimension matched filter (MF), Adaptive Cosine/
Coherence Estimator (ACE) or other spectral filter. Still other
examples of the filtering engine use the selected sparse bands
to determine whether to compute a modified MF score using
a local covariance within the vicinity of a target. The local
covariance can be a more appropriate measure of background
than the full scene covariance (COV). However, it is often
numerically unstable to compute a local covariance using full
dimensions.

In contrast to the filtering engine and its examples, prior
attempts have utilized band selection for class separation and
specific discrimination of a singular feature using training
data, rather than dynamically selecting a subset of wave-
bands. Other prior attempts have used band similarity/dispar-
ity including first spectral derivative (FSD) and uniform spec-
tral spacing (USS). Researchers have investigated techniques
involving principal component analysis (PCA), noise-ad-
justed PCA, distance-based measurement, and information-
theory-based band selection. None of these prior techniques,
however, describe band selection optimized on a per scene,
per target basis.

For example, Chang describes an approach called “Band
Correlation Minimization” that works on a scene-wide basis,
independent of the target.

Rotman et al. postulate that there should be a best band
subset for every statistical filter in each scene but does not
describe how to find such a setin practice. Rotman et al., show
that if one can compute a Receiver Operating Characteristic
(ROC) curve, a parameter can be extracted from the ROC
curve to compare performance of different band sets and
algorithms. This is not enabling because one can only com-
pute a ROC curve when one has truth data as to which pixels
contain targets and which do not. Typically, such data is not
available when trying to detect targets. Further, Rotman et al.
do a sequential search of band space susceptible to finding
local minima in the search.

In contrast to the filtering engine (and its examples), none
of'the foregoing references describes an approach to dynami-
cally find a “good enough” band set for detection using sig-
nal-to-clutter ratio as a metric of “goodness.” None of the
foregoing references describes a layered search criteria
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approach. None of the foregoing references describes a two-
step process to obtain equivalent performance as full dimen-
sion processing.

In accordance with an example, a method for selecting a
subset of hyperspectral imaging wavebands to detect a target
in a scene includes, in a filtering engine provided with a
plurality of spectra of a target and a covariance matrix of a
scene, for each spectrum in the plurality of spectra of the
target, computing a signal-to-clutter ratio of a full set of
wavebands. The computed signal-to-clutter ratio of the full
set of wavebands represents the probability of detecting the
target viewed in the scene. The method further includes
selecting a subset of the full set of wavebands and computing
a signal-to-clutter ratio of the selected subset of wavebands.
The computed signal-to-clutter ratio of the selected subset of
wavebands represents the probability of detecting the target
viewed in the scene using the selected subset of wavebands.
The method further includes comparing the signal-to-clutter
ratio of the subset of wavebands to the signal-to-clutter ratio
of the full set of wavebands and determining whether the
subset of wavebands is a good enough set of wavebands based
on the comparison. The method further includes providing
the good enough set of wavebands to detect the target in the
scene. In some examples of the method, the selected subset of
wavebands having a specified number of wavebands is a good
enough set of wavebands. In other examples of the method,
the selected subset of wavebands having a specified signal-
to-clutter ratio or having a specified fraction of the total
signal-to-clutter ratio for the full set of wavebands is a good
enough set of bands.

In accordance with an example, a system for selecting a
subset of hyperspectral imaging wavebands to detect a target
in a scene includes a memory storing computer executable
instructions and at least one interface receiving a plurality of
spectra of a target and a covariance matrix of a scene. The
system further includes a filtering engine coupled to the
memory and the at least one interface. The computer execut-
able instructions when executed by the filtering engine cause
the filtering engine to, for each spectrum in the plurality of
spectra of the target, compute a signal-to-clutter ratio of a full
set of wavebands. The computed signal-to-clutter ratio of the
full set of wavebands represents the probability of detecting
the target viewed in the scene. The filtering engine further
caused to select a subset of the full set of wavebands and
compute a signal-to-clutter ratio of the selected subset of
wavebands. The computed signal-to-clutter ratio of the
selected subset of wavebands represents the probability of
detecting the target viewed in the scene using the selected
subset of wavebands. The filtering engine further caused to
compare the signal-to-clutter ratio of the subset of wavebands
to the signal-to-clutter ratio of the full set of wavebands, and
determine whether the subset of wavebands is a good enough
set of wavebands based on the comparison. The filtering
engine further caused to provide the good enough set of
wavebands to detect the target in the scene. In some examples
of the system, the selected subset of wavebands having a
specified number of wavebands is a good enough set of wave-
bands. In other examples of the system, the selected subset of
wavebands having a specified signal-to-clutter ratio or having
a specified fraction of the total signal-to-clutter ratio for the
full set of wavebands is a good enough set of bands.

In accordance with an example, a tangible computer-read-
able storage medium storing computer readable instructions
for processing images, which when executed by one or more
processors cause the one or more processors provided with a
plurality of spectra of a target and a covariance matrix of a
scene cause the one or more processors to, for each spectrum
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in the plurality of spectra of the target, compute a signal-to-
clutter ratio of a full set of wavebands. The computed signal-
to-clutter ratio of the full set of wavebands represents the
probability of detecting the target viewed in the scene. The
one or more processors further caused to select a subset of the
full set of wavebands, and compute a signal-to-clutter ratio of
the selected subset of wavebands. The computed signal-to-
clutter ratio of the selected subset of wavebands represents
the probability of detecting the target viewed in the scene
using the selected subset of wavebands. The one or more
processors further caused to compare the signal-to-clutter
ratio of the subset of wavebands to the signal-to-clutter ratio
of'the full set of wavebands, and determine whether the subset
ofwavebands is a good enough set of wavebands based on the
comparison. The one or more processors further caused to
provide the good enough set of wavebands to detect the target
in the scene. In some examples of the medium, the selected
subset of wavebands having a specified number of wavebands
is a good enough set of wavebands. In other examples of the
medium, the selected subset of wavebands having a specified
signal-to-clutter ratio or having a specified fraction of the
total signal-to-clutter ratio for the full set of wavebands is a
good enough set of bands.

In other examples, any of the aspects above can include one
or more of the following features.

In some examples, selecting the subset of wavebands
includes computing a matched filter weight for each wave-
band in the full set of wavebands, and then deleting wave-
bands with the smallest matched filter weights from the full
set of wavebands resulting in a reduced set of wavebands. The
reduced set of wavebands being the subset of wavebands that
is selected and from which the good enough set of wavebands
is determined.

In other examples, selecting the subset of wavebands
includes determining, in a number of iterations, reduced sets
of wavebands. In each iteration, computing a matched filter
weight for each waveband in an input set of wavebands. The
input set of wavebands of a first iteration being the full set of
wavebands and the input set of wavebands of subsequent
iterations being the reduced sets of wavebands from previous
iterations. Deleting a waveband with the smallest matched
filter weight from the input set of wavebands resulting in a
reduced set of wavebands. Ending the iterations when the
reduced set of wavebands has a specified number of wave-
bands, specified signal-to-clutter ratio or has a specified frac-
tion of the total signal-to-clutter ratio for the full set of wave-
bands. The reduced set of wavebands being the subset of
wavebands that is selected and from which the good enough
set of wavebands is determined.

In some examples, selecting the subset of wavebands
includes determining, in a number of iterations, included sets
of' wavebands. In each iteration, selecting a waveband from a
group of wavebands which when combined with wavebands
of an input set of wavebands have, collectively, the highest
signal-to-clutter ratio. The group of wavebands of a first itera-
tion being a full set of wavebands and groups of wavebands of
subsequent iterations being the full set of wavebands less
wavebands selected in previous iterations. Adding the
selected waveband to the input set of wavebands resulting in
intermediate set of wavebands. The input set of wavebands of
a first iteration having a number of wavebands, including
zero, and input sets of wavebands of subsequent iterations
being included sets of wavebands determined in previous
iterations. Deleting one or more wavebands from the inter-
mediate set of wavebands contributing the least to a signal-
to-clutter ratio of the intermediate set of wavebands resulting
in aset ofincluded wavebands. Ending the iterations when the
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set of included wavebands has a specified number of wave-
bands, specified signal-to-clutter ratio or has a specified frac-
tion of the total signal-to-clutter ratio for the full set of wave-
bands. The set of included wavebands being the subset of
wavebands that is selected and from which the good enough
set of wavebands is determined.

In other examples, determining the good enough set of
wavebands includes determining a set of wavebands provid-
ing a signal-to-clutter ratio that is better than or equal to a
specified percentage of the signal-to-clutter ratio of the full
set of wavebands.

In some examples, determining the good enough set of
wavebands includes determining a fixed number of wave-
bands belonging to the good enough set of wavebands.

In other examples, determining the good enough set of
wavebands includes determining the good enough set of
wavebands having

a fixed signal-to-clutter ratio or having fixed fraction of the
total signal-to-clutter ratio for the full set of wavebands.

Some examples further include, in the filtering engine pro-
vided with a plurality of pixels in the scene, processing each
pixel in the plurality of pixels with the good enough set of
wavebands. Identifying which pixels in the scene are candi-
date detections based on the processed pixels. Processing
each of the candidate detections with the full set of wave-
bands. Detecting the target in the scene based on the pro-
cessed candidate detections.

Other examples further include, in the filtering engine pro-
vided with a plurality of pixels in the scene, processing each
pixel in the plurality of pixels with the good enough set of
wavebands. Identifying which pixels in the scene are candi-
date detections based on the processed pixels. Processing
each of the candidate detections with the full set of wavebands
using a localized scene covariance. Detecting the target in the
scene based on the localized scene covariance processed can-
didate detections.

In some examples, selecting the subset of wavebands
includes computing a matched filter weight for each wave-
band in the full set of wavebands. Deleting wavebands with
the smallest matched filter weights from the full set of wave-
bands resulting in a reduced set of wavebands.

In a first round of iterations, determining further reduced
sets of wavebands including, in each iteration of the first
round of iterations, computing a matched filter weight for
each waveband in a first round input set of wavebands. The
first round input set of wavebands of a first iteration being the
reduced set of wavebands determined from the full set of
wavebands and the first round input sets of wavebands of
subsequent iterations being the further reduced sets of wave-
bands from previous iterations of the first round of iterations.
Deleting a waveband with the smallest matched filter weight
from the first round input set of wavebands resulting in a
further reduced set of wavebands. Ending the first round of
iterations when the further reduced set of wavebands has a
specified number of wavebands, specified signal-to-clutter
ratio or has a specified fraction of the total signal-to-clutter
ratio for the full set of wavebands.

In a second round of iterations, determining included sets
of' wavebands including, in each iteration of the second round
of iterations, selecting a waveband from a group of wave-
bands which when combined with wavebands of a second
round input set of wavebands have, collectively, the highest
signal-to-clutter ratio. The group of wavebands of a first itera-
tion being the further reduced set of wavebands determined in
the first round of iterations and groups of wavebands of sub-
sequent iterations being the further reduced set of wavebands
less wavebands selected in previous iterations of the second
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round of iterations. Adding the selected waveband to the
second round input set of wavebands resulting in intermediate
set of wavebands. The second round input set of wavebands of
a first iteration having a number of wavebands, including
zero, and second round input sets of wavebands of subsequent
iterations being included sets of wavebands determined in
previous iterations of the second round of iterations. Deleting
one or more wavebands from the intermediate set of wave-
bands contributing the least to a signal-to-clutter ratio of the
intermediate set of wavebands resulting in a set of included
wavebands. Ending the second round of iterations when the
set of included wavebands has a specified number of wave-
bands, specified signal-to-clutter ratio or has a specified frac-
tion of the total signal-to-clutter ratio for the full set of wave-
bands. The set of included wavebands being the subset of
wavebands that is selected and from which the good enough
set of wavebands is determined.

These and other features and characteristics, as well as the
methods of operation and functions of the related elements of
structure and the combination of parts and economies of
manufacture, will become more apparent upon consideration
of the following description and the appended claims with
reference to the accompanying drawings, all of which form a
part of this specification, wherein like reference numerals
designate corresponding parts in the various Figures. It is to
be expressly understood, however, that the drawings are for
the purpose of illustration and description only and are not
intended as a definition of the limits of claims. As used in the
specification and in the claims, the singular form of “a”, “an”,
and “the” include plural referents unless the context clearly
dictates otherwise.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
will be apparent from the following more particular descrip-
tion of the embodiments, as illustrated in the accompanying
drawings in which like reference characters refer to the same
parts throughout the different views. The drawings are not
necessarily to scale, emphasis instead being placed upon
illustrating the principles of the embodiments.

FIG. 1 is a block diagram of an example imaging system
with a filtering engine.

FIG. 2 is a block diagram of an example of the filtering
engine.

FIG. 3 is a block diagram of an example of a layered
approach employed by the filtering engine of FIG. 2.

FIG. 4 is a flow chart of an example of a ranked search
technique.

FIG. 5 is a flow chart of an example of a leave-one-out
search technique.

FIGS. 6A and 6B are block diagrams relating to the
example of the leave-one-out search technique of FIG. 5.

FIG. 7is ablock diagram of an example of'a variable search
technique.

DETAILED DESCRIPTION

In the description that follows, like components have been
given the same reference numerals, regardless of whether
they are shown in different examples. To illustrate an example
(s) of the present disclosure in a clear and concise manner, the
drawings may not necessarily be to scale and certain features
may be shown in somewhat schematic form. Features that are
described and/or illustrated with respect to one example may
be used in the same way or in a similar way in one or more
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other examples and/or in combination with or instead of the
features of the other examples.

Depicted in FIG. 1 is an example of imaging system 102
that is configured to process images and to detect materials/
targets in backgrounds/scenes. By way of example only,
imaging system 102 may be a hyperspectral imaging system.
The term “hyperspectral” refers to imaging narrow spectral
bands over a continuous spectral range, and producing the
spectra of all pixels in a scene (e.g., scene 106). Imaging
system 102 may be stationary or mobile, airborne or land
based (e.g., on an elevated land structure or building), or may
be on an aircraft or a satellite. As shown, imaging system 102
may incorporate image processor 100, and may be coupled to
or otherwise contained within remote imaging system 104.
Remote imaging system 104 may be of any suitable construc-
tion or configuration, including but not limited to comprising
a satellite, an aerial surveillance system, or any other system
that can capture images. Additionally, remote imaging system
104 may be stationary or mobile. In an example, imaging
system 102 and remote imaging system 104 may be config-
ured to capture one or more images of a particular scene 106
corresponding to a geographical area (e.g., a ground terrain).

In an example, remote imaging system 104 may be config-
ured to use imaging system 102 to capture hyperspectral
image(s) of scene 106 that are provided as input hyperspectral
image (HSI) scenes to image processor 100. In an example,
hyperspectral imaging system 102 may include one or more
scan mirrors 110, or may include other optics arranged to
receive light 108 reflected from one or more ground resolu-
tion cells. Light 108 reflected from one or more ground reso-
Iution cells, and generally the entire scene 106, may be used
by image processor 100 to determine an input reflectivity of
input HSI scene. Input HSI scene may be a part of scene 106,
or may be the entire scene 106 depending upon specific target
detection goals. In an example, scan mirrors 110 or the other
optics may then direct light 108 through dispersing element
112, which may be arranged to separate light 108 into various
different wavelengths (i.e., a spectra). After being separated
into the various different wavelengths, light 108 may then be
directed to one or more imaging optics 114, which may focus
the various wavelengths onto a focal plane of detector array
116. As such, detector array 116 may capture hyperspectral
data across the spectrum of wavelengths, thereby generating
a data set corresponding to a hyperspectral image of scene
106.

As shown, the imaging system 102 includes a detecting
engine 150 for detecting a target in a scene, such as a material
against a background. HSI sensors typically collect 200-400
narrow spectral bands over a given sensing regime (e.g.,
visible and near infra-red (VNIR)/short wave infrared
(SWIR) and long wave infrared (LWIR)). It may not be prac-
tical for the detecting engine 150 to process this amount of
information, especially when the detecting engine 150 is
located “on-broad” the remote imaging system 104, as shown
in the figure. It may also not be practical to process this
amount of information “on-ground.” Ground stations are not
able to process total daily collections in excess of several
terabytes per day.

The amount of information processed by the detecting
engine 150 can be reduced by reducing the number of hyper-
spectral imaging wavebands used to analyze hyperspectral
images. Often for a given target in a specific scene (referred to
as a target/scene pair or material/background pair), there are
5-20 hyperspectral imaging wavebands that contain over 90%
of the useful information. Accordingly, the imaging system
102 further includes a filtering engine 160. The filtering
engine 160 selects subsets of hyperspectral imaging wave-
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8

bands having information useful for detecting targets in
scenes. These informative bands are called “sparse bands”
and are components of a “sparse filter.”

FIG. 2 shows an example of the filtering engine 160. Inputs
161 to the filtering engine 160 include a background mean
vector and covariance matrix, target reference vector, process
control parameters, and “goodness” criteria. The goodness
criteria may be, for example, a specified number of wave-
bands, a specified signal-to-clutter ratio or a specified fraction
of'the total signal-to-clutter ratio for the full set of wavebands.

The goodness criteria may be provided by a user to the
filtering engine 160 (e.g., via with a user interface element
communicative coupled to or part of the filtering engine 160).
The goodness criteria may be provided in response to particu-
lar application or mission. For example, when the mission is
to find particular vegetation, the filtering engine 160 is pro-
vided with a first goodness criterion. When the mission
changes to find explosives, the filtering engine 160 is pro-
vided with a second goodness criterion different than the first.
Differences in goodness criterion from one application to
another may reflect the different criticality of the applica-
tions.

Outputs 162 of the filtering engine 160 include selected
bands for material/background (or target/scene) pairs. Some
examples of'the filtering engine 160 use a layered approach to
select a set of sparse bands each tailored for a particular
material/background (or target/scene) pair.

FIG. 3 shows an example of a layered approach 300. The
layered approach 300 includes a ranked search technique 305,
leave-one-out search technique 310, and variable search tech-
nique 315. The search techniques 305, 310, and 315 are said
to be layered because the output of one search technique is the
input to a next search technique. Layering the search tech-
niques brings computational efficiency to band selection.
Each subsequent search technique is “better” at selecting
bands but at the expense of more computations. For example,
in convenient example of the layered approach 300, the first
two search techniques, ranked and leave-one-out, are
designed to quickly remove bands that are not useful (i.e.,
with little or no information) for detecting targets in scenes.
The result is a manageable subset of bands that can be sup-
plied to the final, variable search technique for optimal selec-
tion of bands.

Returning to the example of FIG. 2, the filtering engine 160
includes a ranked search module 205 implementing the
ranked search technique 305, a leave-one-out search module
210 implementing the leave-one-out search technique 310,
and a variable search module 215 implementing variable
search technique 315. The modules 205, 210, and 215 are
communicatively coupled to one another as shown.

In operation of a convenient example of the filtering engine
160, the ranked search module 205 uses normalized matched
filter weights calculated in full dimensions to quickly elimi-
nate bands that are not useful for detection. The ranked search
module 205 receives the input 161 (e.g., for the image pro-
cessor 100 of FIG. 1), including a full set of wavebands for a
particular material/background (or target/scene) pair and an
associated SCR (full band SCR). The ranked search module
205 also receives termination conditions 220 including a
“good enough” condition for the ranked search technique
305. (The good enough condition is described in greater detail
below.)

The ranked search module 205 calculates the normalized
weights by multiplying the matched filter weights in each
wavelength by the standard deviation for that wavelength.

Warr=2y " (s—113),
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where
W, are the matched filter weights
and where:

s=known target spectrum
1,=mean background
2, =covariance matrix

o 0 0
0 - 0
0 0 o,

Wy = “Wur,

where W, are the normalized weights and o, are the standard
deviations of the bands.

This has the effect of equalizing the importance of each
band. Without normalization, a band with a large variance in
the background scene is given too small a weight after mul-
tiplying by the inverse covariance. This may lead to undesir-
able or erroneous results. Normalizing by multiplying by the
standard deviation results in a more appropriate contribution
from bands with large or small scene variance.

Once the weights are normalized, the ranked search mod-
ule 205 ranks them by importance e.g., ones with larger
magnitudes are deemed more important. The ranked search
module 205 removes lower ranked bands until the good
enough condition is satisfied, e.g., a desired number of bands
is reached. The goal of the ranked search technique 305 is not
to select the “best” bands but to reduce the initial set of bands
to a more computationally manageable number for the next
level of selection. Therefore the ranked search technique 305
is designed to reject non-informative bands with very little
computational overhead. The ranked search module 205
passes an intermediate output 225, including the remaining
bands as a reduced band set for the particular material/back-
ground pair and an associated reduced SCR to the variable
search module 215 to the leave-one-out search module 210.

The leave-one-out search module 210 receives the inter-
mediate output 225 and termination conditions 230 including
a “good enough” condition for the leave-one-out search tech-
nique 310. The leave-one-out search module 210 iteratively
removes the least-informative band until the good enough
condition is satisfied, e.g., a desired number of bands is
reached.

The leave-one-out search module 210 removes the band
with the smallest normalized weight and then recomputing
the weights with the remaining bands, and repeating the pro-
cess. The computational expense is equivalent to taking the
inverse of a matrix that is the dimension of the initial number
of'bands passed to this layer. The leave-one-out search mod-
ule 210 passes an intermediate output 235, including the
remaining bands as a reduced band set for the particular
material/background pair and an associated reduced SCR to
the variable search module 215.

The variable search module 215, receives the intermediate
output 235 and termination conditions 240 including a “good
enough” condition for the variable selection search technique
315. The variable search module 215, at any point in its
search, adds a band that produces the highest signal-to-clutter
ratio (SCR) in conjunction with the bands already selected.
The variable search technique 315 is an example of a
“greedy” algorithm that has the possibility of become trapped
in a local minimum. The variable search module 215 reduces
the possibility of this occurring by “backtracking” When the
variable search module 215 adds a new band, the variable
search module 215 attempts to replace previously selected
bands to improve the SCR. The variable search module 215
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produces the output 162, including a reduced set of bands for
the particular material/background pair and an associated
reduced SCR.

While the variable search technique 315 is computation-
ally efficient relative to similar classes of search techniques,
the variable search technique 315 is computationally inten-
sive relative to the ranked search technique 305 and leave-
one-out search technique 310. Accordingly, in practice, the
variable search technique 315 is used to pick a small subset of
bands from a manageable initial subset found by the proceed-
ing search techniques.

While the filtering engine 160 is described implementing
all three search techniques, each search technique may be
executed by itself to perform band selection. As such, other
examples of the filtering engine 160 may include a fewer
number modules (including 1) executing a fewer number of
search techniques (including 1). Having described the search
techniques 305, 310, and 315 in the context of the an example
of the layered approach 300, as carried out by the filtering
engine 160, each search technique and its examples are
described in greater detail below.

FIG. 4 shows an example of the ranked search technique
305 executed by the ranked search module 205. The ranked
search module 205 normalizes weights (320). For example,
the ranked search module normalizes (320) the weights by
multiplying matched filter weights in each wavelength by a
standard deviation for that wavelength. Normalization has the
effect of equalizing the importance of each band.

After weight normalization (320), the ranked search mod-
ule 205 selects (324) K largest peaks in magnitude space and
adds (326) them to a subset of selected bands. Peaks are used
to spread wavelength selections out across the full spectral
range. If only the weight magnitudes were used instead of
peaks, a search technique would typically chose many wave-
lengths close to one another because neighboring bands are
highly correlated. The ranked search module 205 zeroes
(328) the normalized weights for the selected K peaks. Zero-
ing a weight allows new peaks and, therefore, bands to be
chosen close to other bands that are already selected.

The ranked search module 205 repeats the foregoing, as
shown in FIG. 4, until the ranked search module 205 deter-
mines (330) that the subset of selected bands is a “good
enough” set of bands. In some examples of the ranked search
technique 305, the subset of selected bands having a specified
number of wavebands is a good enough set of bands. In other
examples, the subset of selected bands having a specified
signal-to-clutter ratio or having a specified fraction of the
total signal-to-clutter ratio for the full set of wavebands is a
good enough set of bands.

The ranked search technique 305 is very fast in removing
non-informative bands. Observations have shown that some
examples of the ranked search technique 305 reduce a full
band set (~200 bands) to a third the number of bands (~70)
without sacrificing much in detection performance. This
reduction in bands significantly reduces processing in the
subsequent band selection layers.

FIG. 5 is shows an example of the leave-one-out search
technique 310 executed by the leave-one-out search module
210. Operating in a “standalone” mode, inputs to the leave-
one-out search module 210 include a background mean vec-
tor and covariance matrix, target reference vector, algorithm
control parameters, and the desired number of reduced bands.
Operating in a “layered” mode, inputs to the leave-one-out
search module 210 also include bands selected using the
ranked search technique 305 described above. In both modes,
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the leave-one-out search module 210 iterates removing one
non-informative band at a time until the desired number is
reached.

The leave-one-out search module 210 calculates (332)
matched filter weights using, for example, the standard
matched filter equations known in the art. The leave-one-out
search module 210 normalizes (334) the calculated weights in
a manner similar to one described above in the ranked search
technique 305. The leave-one-out search module 210
removes (336) the band with the smallest normalized weight
magnitude resulting in a reduced set of bands.

The leave-one-out search module 210 repeats the forego-
ing until the leave-one-out search module 210 determines
(338) that the reduced set of bands is a “good enough” set of
bands. In some examples of the leave-one-out search tech-
nique 310, the reduced set of bands having a specified number
of wavebands is a good enough set of bands. In other
examples, the reduced set of bands having a specified signal-
to-clutter ratio or having a specified fraction of the total
signal-to-clutter ratio for the full set of wavebands is a good
enough set of bands.

Having not determined a good enough set of bands at 328,
the leave-one-out search module 210 calculates (340) the
covariance inverse of the reduced set of bands (i.e., the leave-
one-out search module 210 the calculation in reduced space).
Typically, each weight calculation requires a matrix inversion
that is O(N**3) operations where N is the dimension of the
matrix to be inverted. Examples of the leave-one-out search
technique 310 significantly reduced the number of computa-
tions. At each iteration of the leave-one-out search technique
310, the covariance matrix to be inverted differs by one row
and column (for the band to be removed) from the covariance
matrix inverted previously.

FIG. 6A gives an example in which a new covariance
matrix is formed from the old covariance matrix after the last
row and column are removed, which is equivalent to remov-
ing the last band. In the figure, the given equation shows the
new inverse matrix being calculated in O(N**2) operations
given the old inverse matrix. In contrast, without any knowl-
edge of the old inverse matrix, the new inverse matrix is
computed in O(N**3) operations.

Returning to FIG. 5, the leave-one-out search module 210
iterates the leave-one-out search technique 310 by re-com-
puting (344) the matched filter weights of bands in the
reduced set of bands and repeating the foregoing as shown in
FIG. 5. The reference vector in reduced space is formed by
removing the value in the band that was removed above.

A convenient example of the leave-one-out search tech-
nique 310 removes an arbitrary band in two steps. The leave-
one-out search module 210 rearranges covariance and cova-
riance inverse using elementary row and column operations
as shown in FIG. 6B. The correlations and variance of the
band being removed are placed in the last row and column.
The leave-one-out search module 210 then computes the new
inverse as shown in FIG. 6A. The foregoing example of the
leave-one-out search technique 310 allows for all bands to be
ranked (reduced) in O(N**3) operations because there could
be N reductions with each taking O(N**2) operations.

An example of the variable search module 215 selects K
bands from the subset of bands that are outputted from the
leave-one-out search module 210. The variable search mod-
ule 215 attempts to optimize the SCR for a reference vector
against the observed background. Note, the SCR for a
selected band set can be computed directly from the covari-
ance matrix, background mean and reference vector. One of
the advantages to using the SCR as an evaluation criterion is
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that a set of bands can be evaluated without having to process
all pixels and can be computed quickly.

In general, the variable search technique 315 can run in two
modes. The variable search technique 315 can perform “for-
ward” selection where it starts off with no bands (or a few
seeded bands) and then continues to add and subtract bands
until a “good enough” condition is satisfied, e.g., a desired
number of bands is reached. Or the variable search technique
315 can perform backwards selection where it is initialized
with all bands and then proceeds to remove and add bands
until a desired number of selected band is reached. Both
backward and forward selections have been tested on spectral
cubes and both searches produced similar results. Therefore,
a convenient example of the variable search technique 315
used in the layered approach 300 is forward selection because
it takes fewer computations.

FIG. 7 shows an example of the variable search technique
315 during the search for the “best” third band. At the point
illustrated in the figure, the three bands that provide the high-
est SCR are bands 1, 3 and 5. The three bands combined
produce a SCR of 10. The variable search module 215 deter-
mines if there is a better third band than band 5 by evaluating
bands 6 thru 8 in place of band 5 in sequence. For each
combination, the appropriate covariance elements are taken
from the larger covariance matrix (e.g., input from the Leave-
one-out Method) as well as the appropriate target reference
elements

The variable search module 215 takes the appropriate
covariance from the larger covariance matrix (e.g., input from
the leave-one-out search module 210) as well as the appro-
priate target reference elements. The variable search module
215 calculates the matched filter SCR using, for example, the
matched filter equation shown in paragraph [008].

After trying all bands, the variable search module 215
stores the three band combination that produces the highest
(combined) SCR. For example, assume the SCR after trying
bands 6 through 8 are all less than 10, then bands 1, 3 and 5
remain the “best” three band combination.

Note the SCR calculation involves the inverse of the
smaller covariance matrix, which is computationally inten-
sive. In a convenient example of the variable search technique
315, the computations are sped up significantly by noting that
the covariance of a new band set under evaluation is just one
band different from the last one. Knowledge of the previous
inverse dramatically reduces computations.

After evaluating all three band combinations, the variable
search module 215 performs “backtracking” For example, the
variable search module 215 ignores band 3 and the variable
search module 215 computes the SCR for two-band combi-
nation of bands 1 and 5 (band 5 being just determined to be
part of the “best” three band combination).

If that SCR is higher than the “best” previous two-band
combination (1 and 3), the variable search module 215
removes band 3 from the feature list.

A convenient example of the variable search module 215
saves the SCR for the previous “best” two-band combinations
and it does not need to be recomputed. Backtracking looks at
all the previously selected bands to see which should be
eliminated. Note that a band that is eliminated could be added
back later in the search.

After backtracking, the variable search module 215 adds
another band and the process is repeated until the desired
number of bands is reached.

The above-described systems and methods can be imple-
mented in digital electronic circuitry, in computer hardware,
firmware, and/or software, e.g., in imaging system 102. The
implementation can be as a computer program product (i.e., a
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computer program tangibly embodied in an information car-
rier medium). The implementation can, for example, be in a
machine-readable storage device for execution by, or to con-
trol the operation of, data processing apparatus. The imple-
mentation can, for example, be a programmable processor, a
computer, and/or multiple computers.

In one example, a computer program can be written in any
form of programming language, including compiled and/or
interpreted languages, and the computer program can be
deployed in any form, including as a stand-alone program or
as a subroutine, element, and/or other unit in image processor
100 suitable for use in a computing environment to carry out
the features and functions of various examples discussed
herein. A computer program can be deployed to be executed
on one computer or on multiple computers at one site (e.g., in
imaging system 102).

Method steps or operations can be performed as processes
by one or more programmable processors executing a com-
puter program to perform functions of various examples by
operating on input data and generating output. Method steps
can also be performed by and an apparatus can be imple-
mented as special purpose logic circuitry. The circuitry can,
for example, be a field programmable gate array (FPGA)
and/or an application specific integrated circuit (ASIC). Mod-
ules, subroutines, and software agents can refer to portions of
the computer program, the processor, the special circuitry,
software, and/or hardware that implements that functionality.

Filtering engine 160 may comprise one or more processors
suitable for the execution of a computer program include, by
way of example, both general and special purpose micropro-
cessors, and any one or more processors of any kind of digital
computer. Generally, a processor receives instructions and
data from a read-only memory or a random access memory or
both. The elements of a computer may comprise a processor
for executing instructions and one or more memory devices
for storing instructions and data. Generally, a computer can
include, can be operatively coupled to receive data from and/
or transfer data to one or more mass storage devices (e.g., a
memory module) for storing data (e.g., magnetic, magneto-
optical disks, or optical disks). The memory may be a tangible
non-transitory computer-readable storage medium having
computer-readable instructions stored therein for processing
images, which when executed by one or more processors
(e.g., filtering engine 160) cause the one or more processors to
carry out or implement the features and functionalities of
various examples discussed herein.

Information carriers suitable for embodying computer pro-
gram instructions and data include all forms of non-volatile
memory, including by way of example semiconductor
memory devices. The information carriers can, for example,
be EPROM, EEPROM, flash memory devices, magnetic
disks, internal hard disks, removable disks, magneto-optical
disks, CD-ROM, and/or DVD-ROM disks. The processor and
the memory can be supplemented by, and/or incorporated in
special purpose logic circuitry.

To provide for interaction with a user, the above described
techniques can be implemented on a computing device hav-
ing a display device. The display device can, for example, be
a cathode ray tube (CRT) and/or a liquid crystal display
(LCD) monitor, and/or a light emitting diode (LED) monitor.
The interaction with a user can, for example, be a display of
information to the user and a keyboard and a pointing device
(e.g., a mouse or a trackball) by which the user can provide
input to the computing device (e.g., interact with a user inter-
face element). Other kinds of devices can be used to provide
for interaction with a user. Other devices can, for example, be
feedback provided to the user in any form of sensory feedback
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(e.g., visual feedback, auditory feedback, or tactile feedback).
Input from the user can, for example, be received in any form,
including acoustic, speech, and/or tactile input.

The above described systems and techniques can be imple-
mented in a distributed computing system that includes a
back-end component. The back-end component can, for
example, be a data server, a middleware component, and/or an
application server. The above described techniques can be
implemented in a distributing computing system that includes
a front-end component. The front-end component can, for
example, be a client computing device having a graphical user
interface, a Web browser through which a user can interact
with an example implementation, and/or other graphical user
interfaces for a transmitting device. The components of the
system can be interconnected by any form or medium of
digital data communication (e.g., a communication network).
Examples of communication networks include a local area
network (LAN), a wide area network (WAN), the Internet,
wired networks, and/or wireless networks.

The system may be coupled to and/or include clients and
servers. A client and a server are generally remote from each
other and typically interact through a communication net-
work. The relationship of client and server arises by virtue of
computer programs running on the respective computing
devices and having a client-server relationship to each other.

Communication networks may include packet-based net-
works, which can include, for example, the Internet, a carrier
internet protocol (IP) network (e.g., local area network
(LAN), wide area network (WAN), campus area network
(CAN), metropolitan area network (MAN), home area net-
work (HAN)), a private IP network, an IP private branch
exchange (IPBX), a wireless network (e.g., radio access net-
work (RAN), 802.11 network, 802.16 network, general
packet radio service (GPRS) network, HiperLAN), and/or
other packet-based networks. Circuit-based networks may
include, for example, the public switched telephone network
(PSTN), a private branch exchange (PBX), a wireless net-
work (e.g., RAN, Bluetooth, code-division multiple access
(CDMA) network, time division multiple access (TDMA)
network, global system for mobile communications (GSM)
network), and/or other circuit-based networks.

The computing device in imaging system 102 may include,
for example, a computer, a computer with a browser device, a
telephone, an IP phone, a mobile device (e.g., cellular phone,
personal digital assistant (PDA) device, laptop computer,
electronic mail device), and/or other communication devices.
The browser device includes, for example, a computer (e.g.,
desktop computer, laptop computer) with a World Wide Web
browser (e.g., INTERNET EXPLORER® available from
Microsoft Corporation, of Redmond, Wash.). The mobile
computing device includes, for example, a BLACKBERRY®
provided by Research In Motion Limited of Waterloo,
Ontario, Canada.

“Comprise,” “include,” and/or plural forms of each are
open ended and include the listed parts and can include addi-
tional parts that are not listed. “And/or” is open ended and
includes one or more of the listed parts and combinations of
the listed parts.

Although the above disclosure discusses what is currently
considered to be a variety of useful examples, it is to be
understood that such detail is solely for that purpose, and that
the appended claims are not limited to the disclosed
examples, but, on the contrary, are intended to cover modifi-
cations and equivalent arrangements that are within the spirit
and scope of the appended claims.

One skilled in the art will realize the invention may be
embodied in other specific forms without departing from the
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spirit or essential characteristics thereof. The foregoing
embodiments are therefore to be considered in all respects
illustrative rather than limiting of the invention described
herein. Scope of the invention is thus indicated by the
appended claims, rather than by the foregoing description,
and all changes that come within the meaning and range of
equivalency of the claims are therefore intended to be
embraced therein.

What is claimed is:

1. A method for selecting a subset of hyperspectral imaging
wavebands to detect a target in a scene, the method compris-
ing:

in a filtering engine provided with a plurality of spectra of

a target and a covariance matrix of a scene, for each
spectrum in the plurality of spectra of the target:
computing a signal-to-clutter ratio of a full set of wave-
bands representing the probability of detecting the
target viewed in the scene;
selecting a subset of wavebands from the full set of
wavebands;
computing a signal-to-clutter ratio of the selected subset
of wavebands representing the probability of detect-
ing the target viewed in the scene using the selected
subset of wavebands;
comparing the signal-to-clutter ratio of the subset of
wavebands to the signal-to-clutter ratio of the full set
of wavebands;
determining whether the subset of wavebands is a good
enough set of wavebands based on the comparison;
and
providing the good enough set of wavebands to detect
the target in the scene:
wherein selecting the subset of wavebands includes
determining, in a number of iterations, reduced sets of
wavebands by:
computing a matched filter weight for each waveband
in an input set of wavebands, the input set of wave-
bands of a first iteration being the full set of wave-
bands and the input set of wavebands of subsequent
iterations being the reduced sets of wavebands
from previous iterations;
deleting a waveband with the smallest matched filter
weight from the input set of wavebands resulting in
a reduced set of wavebands; and
ending the iterations when the reduced set of wavebands has
a specified number of wavebands, specified signal-to-clutter
ratio or has a specified fraction of the total signal-to-clutter
ratio for the full set of wavebands, the reduced set of wave-
bands being the subset of wavebands that is selected and from
which the good enough set of wavebands is determined.

2. The method of claim 1, wherein selecting the subset of
wavebands includes:

computing a matched filter weight for each waveband in

the full set of wavebands; and

deleting wavebands with the smallest matched filter

weights from the full set of wavebands resulting in a
reduced set of wavebands, the reduced set of wavebands
being the subset of wavebands that is selected and from
which the good enough set of wavebands is determined.

3. A method for selecting a subset of hyperspectral imaging
wavebands to detect a target in a scene, the method compris-
ing:

in a filtering engine provided with a plurality of spectra of

a target and a covariance matrix of a scene, for each
spectrum in the plurality of spectra of the target:
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computing a signal-to-clutter ratio of a full set of wave-
bands representing the probability of detecting the
target viewed in the scene;

selecting a subset of wavebands from the full set of
wavebands;

computing a signal-to-clutter ratio of the selected subset
of wavebands representing the probability of detect-
ing the target viewed in the scene using the selected
subset of wavebands;

comparing the signal-to-clutter ratio of the subset of
wavebands to the signal-to-clutter ratio of the full set
of wavebands;

determining whether the subset of wavebands is a good
enough set of

wavebands based on the comparison; and

providing the good enough set of wavebands to detect
the target in the scene:

wherein selecting the subset of wavebands includes deter-

mining, in a number of iterations, included sets of wave-

bands by:

selecting a waveband from an group of wavebands
which when combined with wavebands of an input set
of wavebands have, collectively, the highest signal-
to-clutter ratio, the group of wavebands of a first itera-
tion being a full set of wavebands and groups of wave-
bands of subsequent iterations being the full set of
wavebands less wavebands selected in previous itera-
tions;

adding the selected waveband to the input set of wave-
bands resulting in intermediate set of wavebands, the
input set of wavebands of a first iteration having a
number of wavebands, including zero, and input sets
of'wavebands of subsequent iterations being included
sets of wavebands determined in previous iterations;

deleting one or more wavebands from the intermediate
set of wavebands contributing the least to a signal-to-
clutter ratio of the intermediate set of wavebands
resulting in a set of included wavebands; and

ending the iterations when the set of included wave-
bands has a specified number of wavebands, specified
signal-to-clutter ratio or has a specified fraction of the
total signal-to-clutter ratio for the full set of wave-
bands, the set of included wavebands being the subset
of wavebands that is selected and from which the
good enough set of wavebands is determined.

4. The method of claim 1, wherein determining the good
enough set of wavebands includes determining a set of wave-
bands providing a signal-to-clutter ratio that is better than or
equal to a specified percentage of the signal-to-clutter ratio of
the full set of wavebands.

5. The method of claim 1, wherein determining the good
enough set of wavebands includes determining a fixed num-
ber of wavebands belonging to the good enough set of wave-
bands.

6. The method of claim 1, wherein determining the good
enough set of wavebands includes determining the good
enough set of wavebands having a fixed signal-to-clutter ratio
or having fixed fraction of the total signal-to-clutter ratio for
the full set of wavebands.

7. The method of claim 1, further comprising:

in the filtering engine provided with a plurality of pixels in

the scene,

processing each pixel in the plurality of pixels with the
good enough set of wavebands;

identifying which pixels in the scene are candidate
detections based on the processed pixels;
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processing each of the candidate detections with the full
set of wavebands; and

detecting the target in the scene based on the processed
candidate detections.

8. The method of claim 1, further comprises:

in the filtering engine provided with a plurality of pixels in

the scene,

processing each pixel in the plurality of pixels with the
good enough set of wavebands;

identifying which pixels in the scene are candidate
detections based on the processed pixels;

processing each of the candidate detections with the full
set of wavebands using a localized scene covariance;
and

detecting the target in the scene based on the localized
scene covariance processed candidate detections.

9. A method for selecting a subset of hyperspectral imaging
wavebands to detect a target in a scene, the method compris-
ing:

in a filtering engine provided with a plurality of spectra of

a target and a covariance matrix of a scene, for each

spectrum in the plurality of spectra of the target:

computing a signal-to-clutter ratio of a full set of wave-
bands representing the probability of detecting the
target viewed in the scene;

selecting a subset of wavebands from the full set of
wavebands;

computing a signal-to-clutter ratio of the selected subset
of wavebands representing the probability of detect-
ing the target viewed in the scene using the selected
subset of wavebands;

comparing the signal-to-clutter ratio of the subset of
wavebands to the signal-to-clutter ratio of the full set
of wavebands;

determining whether the subset of wavebands is a good
enough set of

wavebands based on the comparison; and

providing the good enough set of wavebands to detect
the target in the scene;

wherein selecting the subset of wavebands includes:

computing a matched filter weight for each waveband in
the full set of wavebands; and
deleting wavebands with the smallest matched filter
weights from the full set of wavebands resulting in a
reduced set of wavebands;
in a first round of'iterations, determining further reduced
sets of wavebands including:
in each iteration of the first round of iterations, com-
puting a matched filter weight for each waveband in
a first round input set of wavebands, the first round
input set of wavebands of a first iteration being the
reduced set of wavebands determined from the full
set of wavebands and the first round input sets of
wavebands of subsequent iterations being the fur-
ther reduced sets of wavebands from previous itera-
tions of the first round of iterations;
deleting a waveband with the smallest matched filter
weight from the first round input set of wavebands
resulting in a further reduced set of wavebands; and
ending the first round of iterations when the further
reduced set of wavebands has a specified number of
wavebands, specified signal-to-clutter ratio or has a
specified fraction of the total signal-to-clutter ratio
for the full set of wavebands;
in a second round of iterations, determining included
sets of wavebands including;
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in each iteration of the second round of iterations,
selecting a waveband from an group of wavebands
which when combined with wavebands of a second
round input set of wavebands have, collectively, the
highest signal-to-clutter ratio, the group of wave-
bands of a first iteration being the further reduced
set of wavebands determined in the first round of
iterations and groups of wavebands of subsequent
iterations being the further reduced set of wave-
bands less wavebands selected in previous itera-
tions of the second round of iterations;

adding the selected waveband to the second round
input set of wavebands resulting in intermediate set
of wavebands, the second round input set of wave-
bands of a first iteration having a number of wave-
bands, including zero, and second round input sets
of wavebands of subsequent iterations being
included sets of wavebands determined in previous
iterations of the second round of iterations;

deleting one or more wavebands from the intermedi-
ate set of wavebands contributing the least to a
signal-to-clutter ratio of the intermediate set of
wavebands resulting in a set of included wave-
bands; and

ending the second round of iterations when the set of
included wavebands has a specified number of
wavebands, specified signal-to-clutter ratio or has a
specified fraction of the total signal-to-clutter ratio
for the full set of wavebands, the set of included
wavebands being the subset of wavebands that is
selected and from which the good enough set of
wavebands is determined.

10. A system for selecting a subset of hyperspectral imag-
ing wavebands to detect a target in a scene, the system com-
prising:

a memory having computer executable instructions there-

upon;

at least one interface receiving a plurality of spectra of a
target and a covariance matrix of a scene;

a filtering engine coupled to the memory and the at least
one interface, the computer executable instructions
when executed by the filtering engine cause the filtering
engine to, for each spectrum in the plurality of spectra of
the target:
compute a signal-to-clutter ratio of a full set of wave-

bands representing the probability of detecting the

target viewed in the scene;

select a subset of the full set of wavebands, including

determining, in a number of iterations, reduced sets of

wavebands by

computing a matched filter weight for each waveband
in an input set of wavebands, the input set of wave-
bands of a first iteration being the full set of wave-
bands and the input set of wavebands of subsequent
iterations being the reduced sets of wavebands
from previous iterations,

deleting a waveband with the smallest matched filter
weight from the input set of wavebands resulting in
a reduced set of wavebands, and

ending the iterations when the reduced set of wave-
bands has a specified number of wavebands, speci-
fied signal-to-clutter ratio or has a specified frac-
tion of the total signal-to-clutter ratio for the full set
of wavebands, the reduced set of wavebands being
the subset of wavebands that is selected and from
which the good enough set of wavebands is deter-
mined;
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compute a signal-to-clutter ratio of the selected subset of
wavebands representing the probability of detecting
the target viewed in the scene using the selected sub-
set of wavebands;

compare the signal-to-clutter ratio of the subset of wave-
bands to the signal-to-clutter ratio of the full set of
wavebands;

determine whether the subset of wavebands is a good
enough set of wavebands based on the comparison;
and

provide the good enough set of wavebands to detect the
target in the scene.

11. A tangible non-transitory computer-readable storage
medium having computer readable instructions stored therein
for selecting a subset of hyperspectral imaging wavebands to
detect a target in a scene, which when executed by one or
more processors provided with a plurality of spectra of a
target and a covariance matrix of a scene cause the one or
more processors to, for each spectrum in the plurality of
spectra of the target:

compute a signal-to-clutter ratio of a full set of wavebands

representing the probability of detecting the target
viewed in the scene;

select a subset of the full set of wavebands, including

determining, in a number of iterations, reduced sets of

wavebands by

computing a matched filter weight for each waveband in
an input set of wavebands, the input set of wavebands
of a first iteration being the full set of wavebands and
the input set of wavebands of subsequent iterations
being the reduced sets of wavebands from previous
iterations,

deleting a waveband with the smallest matched filter
weight from the input set of wavebands resulting in a
reduced set of wavebands, and

ending the iterations when the reduced set of wavebands
has a specified number of wavebands, specified sig-
nal-to-clutter ratio or has a specified fraction of the
total signal-to-clutter ratio for the full set of wave-
bands, the reduced set of wavebands being the subset
of wavebands that is selected and from which the
good enough set of wavebands is determined;

compute a signal-to-clutter ratio of the selected subset of

wavebands representing the probability of detecting the

target viewed in the scene using the selected subset of

wavebands;

compare the signal-to-clutter ratio of the subset of wave-

bands to the signal-to-clutter ratio of the full set of wave-
bands;

determine whether the subset of wavebands is a good

enough set of wavebands based on the comparison; and
provide the good enough set of wavebands to detect the
target in the scene.

12. The method of claim 3, wherein selecting the subset of
wavebands includes:

computing a matched filter weight for each waveband in

the full set of wavebands; and

deleting wavebands with the smallest matched filter

weights from the full set of wavebands resulting in a
reduced set of wavebands, the reduced set of wavebands
being the subset of wavebands that is selected and from
which the good enough set of wavebands is determined.

13. The method of claim 3, wherein determining the good
enough set of wavebands includes determining a set of wave-
bands providing a signal-to-clutter ratio that is better than or
equal to a specified percentage of the signal-to-clutter ratio of
the full set of wavebands.
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14. The method of claim 3, wherein determining the good
enough set of wavebands includes determining a fixed num-
ber of wavebands belonging to the good enough set of wave-
bands.
15. The method of claim 3, wherein determining the good
enough set of wavebands includes determining the good
enough set of wavebands having a fixed signal-to-clutter ratio
or having fixed fraction of the total signal-to-clutter ratio for
the full set of wavebands.
16. The method of claim 3, further comprising:
in the filtering engine provided with a plurality of pixels in
the scene,
processing each pixel in the plurality of pixels with the
good enough set of wavebands;

identifying which pixels in the scene are candidate
detections based on the processed pixels;

processing each of the candidate detections with the full
set of wavebands; and

detecting the target in the scene based on the processed
candidate detections.
17. The method of claim 3, further comprising:
in the filtering engine provided with a plurality of pixels in
the scene,
processing each pixel in the plurality of pixels with the
good enough set of wavebands;

identifying which pixels in the scene are candidate
detections based on the processed pixels;

processing each of the candidate detections with the full
set of wavebands using a localized scene covariance;
and

detecting the target in the scene based on the localized
scene covariance processed candidate detections.

18. A system for selecting a subset of hyperspectral imag-
ing wavebands to detect a target in a scene, the system com-
prising:

a memory having computer executable instructions there-

upon;

at least one interface receiving a plurality of spectra of a
target and a covariance matrix of a scene;

a filtering engine coupled to the memory and the at least
one interface, the computer executable instructions
when executed by the filtering engine cause the filtering
engine to, for each spectrum in the plurality of spectra of
the target:
compute a signal-to-clutter ratio of a full set of wave-

bands representing the probability of detecting the

target viewed in the scene;

select a subset of the full set of wavebands, including

determining, in a number of iterations, included sets

of wavebands by

selecting a waveband from an group of wavebands
which when combined with wavebands of an input
set of wavebands have, collectively, the highest
signal-to-clutter ratio, the group of wavebands of a
first iteration being a full set of wavebands and
groups of wavebands of subsequent iterations
being the full set of wavebands less wavebands
selected in previous iterations,

adding the selected waveband to the input set of wave-
bands resulting in intermediate set of wavebands,
the input set of wavebands of a first iteration having
a number of wavebands, including zero, and input
sets of wavebands of subsequent iterations being
included sets of wavebands determined in previous
iterations,

deleting one or more wavebands from the intermedi-
ate set of wavebands contributing the least to a
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signal-to-clutter ratio of the intermediate set of
wavebands resulting in a set of included wave-
bands, and
ending the iterations when the set of included wave-
bands has a specified number of wavebands, speci-
fied signal-to-clutter ratio or has a specified frac-
tion of the total signal-to-clutter ratio for the full set
of wavebands, the set of included wavebands being
the subset of wavebands that is selected and from
which the good enough set of wavebands is deter-
mined;
compute a signal-to-clutter ratio of the selected subset of
wavebands representing the probability of detecting
the target viewed in the scene using the selected sub-
set of wavebands;
compare the signal-to-clutter ratio of the subset of wave-
bands to the signal-to-clutter ratio of the full set of
wavebands;
determine whether the subset of wavebands is a good
enough set of wavebands based on the comparison;
and
provide the good enough set of wavebands to detect the
target in the scene.

19. A tangible non-transitory computer-readable storage
medium having computer readable instructions stored therein
for selecting a subset of hyperspectral imaging wavebands to
detect a target in a scene, which when executed by one or
more processors provided with a plurality of spectra of a
target and a covariance matrix of a scene cause the one or
more processors to, for each spectrum in the plurality of
spectra of the target:

compute a signal-to-clutter ratio of a full set of wavebands

representing the probability of detecting the target
viewed in the scene;

select a subset of the full set of wavebands, including

determining, in a number of iterations, included sets of
wavebands by
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selecting a waveband from an group of wavebands
which when combined with wavebands of an input set
of wavebands have, collectively, the highest signal-
to-clutter ratio, the group of wavebands of a first itera-
tion being a full set of wavebands and groups of wave-
bands of subsequent iterations being the full set of
wavebands less wavebands selected in previous itera-
tions,

adding the selected waveband to the input set of wave-
bands resulting in intermediate set of wavebands, the
input set of wavebands of a first iteration having a
number of wavebands, including zero, and input sets
of'wavebands of subsequent iterations being included
sets of wavebands determined in previous iterations,

deleting one or more wavebands from the intermediate
set of wavebands contributing the least to a signal-to-
clutter ratio of the intermediate set of wavebands
resulting in a set of included wavebands, and

ending the iterations when the set of included wave-
bands has a specified number of wavebands, specified
signal-to-clutter ratio or has a specified fraction of the
total signal-to-clutter ratio for the full set of wave-
bands, the set of included wavebands being the subset
of wavebands that is selected and from which the
good enough set of wavebands is determined;

compute a signal-to-clutter ratio of the selected subset of

wavebands representing the probability of detecting the
target viewed in the scene using the selected subset of
wavebands;

compare the signal-to-clutter ratio of the subset of wave-

bands to the signal-to-clutter ratio of the full set of wave-
bands;

determine whether the subset of wavebands is a good

enough set of wavebands based on the comparison; and
provide the good enough set of wavebands to detect the
target in the scene.
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